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We prove that the q-state Potts antiferromagnet on a lattice of maximum coor- 
dination number r exhibits exponential decay of correlations uniformly at all 
temperatures {including zero temperature) whenever q>2r .  We also prove 
slightly better bounds for several two-dimensional lattices: square lattice 
{exponential decay for q~>7), triangular lattice (q>~ll),  hexagonal lattice 
{q/>4), and Kagom6 lattice (q~>6). The proofs are based on the Dobrushin 
uniqueness theorem. 

KEY WORDS:  Dobrushin uniqueness theorem; antiferromagnetic Potts 
models; phase transition. 

1. I N T R O D U C T I O N  

Dobrushin's uniqueness theorem ~1~1 provides a simple but powerful 
method for proving the uniqueness of the infinite-volume Gibbs measure, 
as well as the exponential decay of correlations in this unique Gibbs 
measure, for classical-statistical-mechanical systems deep in a single-phase 
region. The basic idea underlying this theorem is that if the probability dis- 
tribution of a single spin a; depends "sufficiently weakly" on the remaining 
spins {o~/}j~;, then one can deduce (by a clever iterative argument) unique- 
ness of the Gibbs measure and exponential decay of correlations. 

The prihcipal applications of this method have been in two regimes: 

1. High temperature. Here a; depends weakly on the {a]}/~i because 
of the strong thermal fluctuations. 
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2. Large magnetic field. Here ai tends to follow the magnetic field, no 
matter what the other spins are doing; so the probability distribu- 
tion of or; again depends weakly on the {crj}~ i. 

However, Koteck~, (cited in ref. 3, pp. 148-149, 457) has pointed out that 
Dobrushin's theorem is applicable also in a third regime: 

3. High entropy. Here ai has so many states available to it (with 
equal or almost equal probability), no matter what the other spins 
are doing, that its probability distribution again depends weakly 
on the {o)}i~ i. 

The simplest example of this situation is the antiferromagnetic q-state Potts 
model,~ 5 71 

~ ' = - J  ~ 6 .... . (1.1) 
A" ~ y 

with J =  - f l  < 0, on a lattice in which each site has r nearest neighbors.-" 
Even at zero temperature ( J =  - o r )  the spin cri is required only to be dif- 
ferent from all the neighboring spins {as}s-~. If q >> r, then the probability 
distribution of a~ depends only weakly on the values of the { aj}j_ ~. It turns 
out that Dobrushin's theorem is applicable whenever q > 2r (see Section 3 
below), as well as in some additional cases (see Sections 4 and 5). Thus, for 
q sufficiently large (how large depends on the lattice under consideration), 
the q-state Potts antiferromagnet has a unique Gibbs measure and 
exponential decay of correlations at all temperatures, including zero tem- 
perature: the system is disordered as a result of entropy. 

More precisely, we expect that for each lattice 5~ there will be a value 
q,.(~) such that: 

(a) For q>q,(LP) the model has exponential decay of correlations 
uniformly at all temperatures, including zero temperature. 

(b) For q = q,.(~) the model has a critical point at zero temperature. 

(c) For q<q,.(Ze) any behavior is possible. Often (though not 
always) the model has a phase transition at nonzero temperature, which 
may be of either first or second order. 3 

-' We use tile notat ion x ~ y to indicate that x is a nearest neighbor ofy .  The sum in ( 1.1 ) thus 
runs over all nearest-neighbor pairs of lattice sites (each pair counted once), and each spin 
takes values ~r~ ~ {I, 2 ..... q}. The antiferromagnetic case corresponds to J =  -,6'  < 0. 
Exceptions to the usual behavior are. for example, the lsing model (q = 2) on the tr iangular 
lattice (q, = 4 ) ,  which has a zero-temperature critical point, ~st and the Ising model on the 
Kagom~ lattice (q,.=3), which is noncritical at all temperatures,  including zero tem- 
perature? "~ 
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S q u a r e - L a t t i c e  Pot.Ls M o d e l  
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Fig. I. Curves where the square-lauice Ports model has been solved: the self-dual curve 
(e J -  l l - '=q  (solid curve), and (e't+ l ) = = 4 - q  (dashed curvel. Tbe horizontal dotted lines 
correspond to e J= I (separating the ferromagnetic and antiferromagnetic regimes) and to 
eg=0 (separating the antiferromagnetic regime from the t, nphysical region eS<0). The 
squares show the known ferromagnetic critical points (q = 1, 2, 3, 41 and the diamonds mark 
the known antiferromagnetic critical points Iq = 2, 3). 

Here  is wha t  is believed to be true for the s t a n d a r d  two-d imens iona l  
lattices: 

S q u a r e  la t t ice .  Baxter  ~~ ~1 has  de te rmined  the exact free energy 
( a m o n g  o the r  quant i t ies)  for the square- la t t ice  Po t t s  mode l  on two special 
curves in the (J,  q) p lane  (see Fig. 1 ): 

e g =  1 _+,,/~ (1.2) 

e g =  - 1  _+ , , /-~-- q (1.3) 

Curve  (1 .2+)  is known  to co r r e spond  to the fer romagnet ic  crit ical point ,  
and  Baxter  ~ 1  has conjec tured  tha t  curve (1 .3+)  co r re sponds  to the 
an t i fe r romagnet ic  cri t ical  point .  F o r  q = 2  this gives the known  exact  
value;~ ~2~ for q = 3 it predic ts  a ze ro - t empera tu re  cri t ical  po in t  (J,.  = - c o  ), 
in accordance  with previous  belief; ~3" t4~.4 and for q > 3 it predicts  that  the 

4 Note also that the q=3 model is exactly soluble at zero temperature in an arbitrary 
magnetic field; ~ ~4 ~v~ this might increase one's suspicions that the zero-temperature zero-field 
case is critical. Indeed, Henley ~s~ has some very interesting predictions for the critical 
exponents. 
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putative critical point lies in the unphysical region (eJ"<0), so that the 
entire physical region - c o  ~<J~<0 lies in the disordered phase. These 
predictions for q =  3, 4 have recently been confirmed by high-precision 
Monte Carlo simulationJ 191 For some further interesting speculations, see 
refs. 20 and 21. 

Triangular lattice. Baxter and collaborators ~22-241 have determined 
the exact free energy (among other quantities) for the triangular-lattice 
Potts model on two special curves in the (J, q) plane (see Fig. 2): 

( e J - 1 ) 2 ( e J + 2 ) = q  (1.4) 

e~=0 for 0 < q < 4  (1.5) 

The uppermost branch of curve (1.4) is known to correspond to the 
ferromagnetic critical point, t'-21 and Baxter 1231 has conjectured that (1.5) 
corresponds to the antiferromagnetic critical point. This prediction of a 
zero-temperature critical point is known to be correct for q=2 ,  tS~ and 
there is heuristic analytical evidence that it is correct also for q =4.118' 251 

Tr iangular -LatL ice PoLLs Model 

l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-~ 0 ~ . . . . .  ~- . . . . . . .  

-1  

- 2  ~ 1  . . . .  
1 2 3 

q 

Fig. 2. Curves where the triangular-lattice Potts model has been solved: (e j -  l)2(eS+ 2 ) =  q 
(solid curve), which has three branches; and the line e J = 0  ldashed line). The horizontal 
dotted line corresponds to e j =  I (separating the ferromagnetic and antiferromagnetic 
regimes). The squares show the known ferromagnetic critical points ( q =  I, 2, 3, 4) and the 
diamonds mark the known antiferromagnetic phase-transition points ( q =  2, 3, 4). Note that 
the antiferromagnetic first-order transition for q = 3 does not  lie on either of the exactly solved 
curves. 
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On the other  hand, for q = 3  this prediction contradicts  the r igorous 
result, ~26~ based on Pi rogov-Sina i  theory, that  there is a low-temperature 
phase with long-range order  and small correlat ion length. Indeed, a recent 
Monte  Carlo study of  the q = 3 model  has found strong evidence for a first- 
order  transit ion (to an ordered phase) at fl ~ 1.594.1271 For  q > 4 one may  
expect that  the triangular-lattice Pot ts  model  is noncritical even at zero 
temperature.  Finally, the physical meaning of  the two lower branches of  
(1.4) is mysterious. The lowermost  branch of  (1.4) lies entirely in the 
unphysical  region e J <  0. The middle branch is located in the antiferro- 
magnetic region for 0 < q < 2 and in the unphysical  region for q > 2; at 
q = 2 it coincides with the antiferromagnetic critical point. For  some further 
interesting speculations, see ref. 20. 

Hexagonal  lattice. This lattice is connected by duality t~~ with the 
tr iangular lattice; s the image of  (1.4)/(1.5) is 

(e J -  1)3 _ 3q(e s _  1) - q2 = 0 (1.6) 

e J = l - q  for 0 < q < 4  (1.7) 

Curve (1.6) has three branches in the region q >~ 0 (see Fig. 3): the uppermost  
branch (with 0 ~< q < ~ and e J/> 1 ) is the ferromagnetic critical point;  the 
middle branch (with 0~<q~<4 and - 1  ~<eJ~<l_) contains the antiferro- 
magnetic Ising critical point  ( q = 2 ,  e S = 2 - x / 3 )  and crosses the zero- 
temperature point  e J = O  at q = ( 3 + v / 5 ) / 2 ~ 2 . 6 1 8 ;  while the lowermost  
branch crosses the zero- temperature  point  e J = 0 at q = (3 - v /5) /2  ~ 0.382. 6 
The meaning  of  this lowermost  branch is mysterious, as is the meaning of  
(1.7). But the behavior  of  the middle branch suggests that  it may  be the anti- 
ferromagnetic critical curve: in this case there would be a zero- temperature  
critical point  for q = (3 + x/~)/2 (if this assertion has any meaning 7), and the 

s Furthermore, the hexagonal-lattice Potts model on the curve (1.6) (and only there) can be 
mapped via the star-triangle transformation onto a triangular-lattice Ports model, which 
turns out to lie exactly on the curve (I.4). 

t' The middle branch is missing in ref. 20, p. 673, Fig. 8. 
7 The Potts models for noninteger q can be given a rigorous meaning via the mapping onto the 

Fortuin-Kasteleyn random-cluster modeU 28 3o) The trouble is that in the antiferromagnetic 
case (J<0) this latter model has negative weights, and so cannot be given a standard 
probabilistic interpretation. In particular, the existence of a good infinite-volume limit is 
problematic; the limit could depend strongly on the subsequence of lattice sizes and on the 
boundary conditions. The same is true of the "anti-Fortuin-Kasteleyn" representation, in 
which the coefficients are products of chromatic polynomials of clusters: again the weights can 
be negative for noninteger q, and the existence of the infinite-volume limit is problematic. 
Likewise, the ice-model representation the' ~) has in general complex weights for 0 < q < 4, even 
in the ferromagnetic case. 
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H e x a g o n a l - L a t t i c e  PoLts Model 
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Fig. 3. Curves  where the hexagonal- la t t ice  Ports model  has been solved: ( ~ , J - I }  ~ -  
3q(e s -  1 ) =  q= (solid curve) ,  which has  three branches;  and  the line e ~ =  I - q  (dashed  line). 
The  horizontal  dot ted lines cor respond to e J =  I (separat ing the fer romagnet ic  and  antiferro- 
magnet ic  regimes) and  to e ~ =  0 (separat ing the ant i fe r romagnet ic  regime from the unphysica l  
region e 't < 0). The  squares  show the k no w n  fer romagnet ic  critical points  (q = I, 2, 3, 4)  and  the 
d i a m o n d  marks  the known ant i fe r romagnet ic  critict, I point  lbr q = 2. The  open circles show the 
points  where the two ant i fe r romagnet ic  b ranches  cross  the e J = 0 line, namely  q = ( 3 + x//5)/2. 

model would be disordered even at zero temperature for q > ( 3  +x/~) /2 .  
For some further interesting speculations, see ref. 21. 

Kagomk lattice. This is not merely an academic example, as some 
condensed-matter systems (for instance, the insulator SrCr8 ,.Ga 4 ,.Oi9) 
have the Kagom+ lattice structure, c32-34~ For q = 2  this model has been 
solved exactly, ~9~ and there is no phase transition at any temperature. For 
q = 3  the zero-temperature model can be mapped onto the zero-tem- 
perature four-state triangular-lattice Ports antiferromagne( :5~ and so is 
expected to be critical. ~83~ For q > 3  one may expect that this model is 
noncritical even at zero temperature. 

In Table I we summarize the believed exact values of q,.(~) for these 
four lattices, along with the upper bounds that follow from our computer- 
assisted proofs. Clearly, our rigorous bounds still fall far short of what is 
believed to be true in most of the lattices considered here. Only for the 
hexagonal lattice are we somewhat close to the expected result. 

The plan of this paper is as follows: In Section 2 we set the notation 
and recall the Dobrushin uniqueness theorem. In Section 3 we prove that 
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Tab le l .  Range of q for  Which We Have Proven Exponential Decay of 
Corre la t ions  at Zero Tempera tu re  fo r  Var ious Lattices" 

Range ofq  

General Hexagonal Square Kagom6 Triangular 

Koteck~ >2r  >/7 ~>9 ~>9 >~ 13 
Single-site decimation >/5 /> 7 >_- 7 ~> 11 
Cluster decimation /> 4 >/6 
Exact >2.618... >3 >3  >4  

"The  first row shows the result given by Koteck~, (see ref. 3, pp. 148-149, 457) and slightly 
generalized here in Section 3. The second row gives our improved result using single-site 
decimation ISection4), and the next row gives our further improvement using more 
sophisticated decimation schemes (Section 5). The last row I"Exact"l shows what is known 
or believed to be the right answer. 

the Dobrushin uniqueness theorem is applicable to the q-state Potts anti- 
ferromagnet on a lattice of maximum coordination number r, uniformly at 
all temperatures (including zero temperature), whenever q > 2r. In Section 4 
we improve this result for some common lattices (square, hexagonal, 
triangular, and Kagom6), using a single-site decimation scheme and a 
computer-assisted proof. Finally in Section 5 we improve our results for the 
hexagonal and Kagom6 lattices using more sophisticated decimation schemes. 

During the preparation of this paper we learned of the tragic death of 
Prof. R. L. Dobrushin, one of the founders of and main contributors to 
modern mathematical statistical mechanics. We dedicate this paper to his 
memory. 

2. NOTATION AND PRELIMINARIES 

2.1. Basic Setup 

The basic framework for all our results is the Dobrushin-Lanford-  
Ruelle (DLR) approach to the equilibrium statistical mechanics of infinite- 
volume classical lattice systems. A pedagogical introduction to this theory 
can be found in ref. 36, Sections 2.1-2.3; detailed expositions can be found 
in the books of Preston, ~37~ Georgii, 13~ and Simon/41 Here we summarize 
very briefly the notation and the basic ideas. The central idea in the DLR 
theory is to define an infinite-vohtme Gibbs measure as a probability dis- 
tribution for the infinite-volume system whose conditional probabilities for 
finite subsystems are given by the Boltzmann-Gibbs formula for the given 
formal Hamiltonian. 
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Consider a classical-statistical-mechanical system on a countably  
infinite lattice 5 a, with spin variables a; (i ~ ~ )  taking values in some state 
space E. 8 The equilibrium statistical mechanics of  such a system is defined 
by a specification 17= {zq~} A n.,e~ ~," : here zt,~(aA I erA,) gives the condit ional  
probabil i ty distribution for the spin configuration a,, = {a~} i~/i inside the 
finite set A, given the spin configurat ion a,j, =- { a~} ~,~, outside A. The { n,j } 
have to satisfy various consistency conditions. (3"36"37) We shall further 
assume that each kernel n..t is quasilocal: (3" 361 this is a very mild decay con- 
dition on the long-range interactions. 

Usually the specification { zc~ } is defined via an interaction ( = "formal 
Hamil tonian")  r = {~A}..~ ~,i~e~ ~,,: here (bj is, roughly speaking, the 
elementary contr ibut ion to the Hamil tonian  coming from the finite set of  
spins A c ~a. Thus, the Hamil tonian  H ~  for volume A with external condi- 
tion a , ,  is 

H~(a~ I a. , , ,)= ~. q~A(a.,,, a , , )  (2.1) 
.4 l i n i t e  ~ 5P 

The kernel n.,~ is then, by definition, the corresponding Bol t zmann-Gibbs  
measure: 

~ ( o , ,  ,,, _ ,  ,,, I~..I,)=z,,(a.,,,) e x p [ - H , ( a ,  la.,..)] I-[ dlx~ 
i e  el 

(2.2) 

where/~o is the a priori single-spin distribution. Under  mild summabil i ty 
condit ions on the interaction {~A}, it can be shown that  (2.1)/(2.2) are 
well-defined and satisfy all the condit ions for a specification, and further- 
more  that  the ~,~ are quasilocalJ 3' 36) (In this paper  all interactions will be 
finite-range, so the requisite condit ions will hold trivially.) 

Finally, a probabil i ty measure It on the configurat ion space of the 
infinite-volume system is said to be an infinite-vohtme Gibbs measure for 
the specification H if, for each finite subset A c ~ ,  the condit ional  proba-  
bility distribution /2(. la..i,) equals rqt( . la~,) .  See refs. 3, 36, and 37 for 
details. 

2.2. Dobrushin 's  Un iqueness  T h e o r e m  

Let us now focus on the kernels n I; I (i ~ &a), which give the probabil i ty 
distribution of a single spin a; condit ional  on the remaining spins { a,} k ~ i. 

8 In all the applications in this paper, tile state space E will be thefinite set { I ..... q}. However, 
the Dobrushin uniqueness theorem is valid in much greater generality. 
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Let us begin by fixing a site i ~ s and another site j 4: i. We shall define a 
quantity c U that measures the strength of direct dependence of a; on aj: 

c,../- sup d(rcl,~(.I {a}), rcl,l(.I {#}) ) (2.3) 

where 

d ( i t , , / t z ) -  sup Ilz,(A)--I.tz(A)[ = sup [p , (A)- - i zz (A)]  (2.4) 
A c E  A ~ E  

is half the variation distance between the probability measures/.t,  and/~2, 
and the supremum in (2.3) is taken over all pairs of configurations {ak} k ~i 
and {ak} k 5; that differ only at the site j. The matrix C =  (cg/)~. i~ ~ is called 
Dobrushin's interdependence matrix. Please note that c~/ is a "worst-case" 
measure of the dependence of a; on aj, in the sense that it is defined via 
the supremum over all configurations of the spins { ak = ak} k ~ ,  aj and ~j. 
Finally, we define the Dobrushin constant 

a -=sup  Y' c,:/ (2.5) 
i ~ 5 ~ ' j ~ i  

We then have the following result: ~ 

Theorem 2.1 (Dobrushin uniqueness theorem). Let H be a quasilo- 
cal specification whose Dobrushin constant ~ is < 1. Then there is at most 
one infinite-volume Gibbs measure for H. 

For  a proof, see ref. 3, Section 8.1, or ref. 4, Section W.I. 9 

Remarks. 1. Under very mild conditions on the specification 
H- -which  always hold if, for example, the state space E is finite--it can be 
shown that there exists at least one infinite-volume Gibbs measure for H. 
So the upshot of Dobrushin's  uniqueness theorem is that there exists 
exactly one infinite-volume Gibbs measure for H. 

2. There is an extension of Dobrushin's  uniqueness theorem that uses 
the Kantorovich-Rubinstein-Vasershtein-Ornstein distance corresponding 
to an arbitrary metric on the state space E, in place of the variation dis- 
tance (2.4): see ref. 2 or ref. 4, Section V.3. This extension is particularly 
useful in studying continuous-spin systems. But in the Potts case it gains 
nothing, as the color-permutation symmetry of the Potts Hamiltonian 
ensures that the variation distance is in fact the "natural" distance. 

,7 H~tming: Simon ~4~ denotes by Pji what we have called c,j--note the reversal of indices! 
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The hypotheses of Theorem 2.1 imply also a strong result on the decay 
of correlations in the unique infinite-volume Gibbs measure. We need a few 
definitions: For  any func t ionf ({a})  and any site i, we define the oscillation 
o f f  at i: 

OAf)- sup If({a} )-f({o- '}) l  (2.6) 
{,-,1. { ~ ' } :  ,-,~ =o-~ vk # i  

We say that f has finite total oscillation if 

A(f) =_ y" 5~(f) < oo (2.7) 

(In particular, any bounded function depending on only finitely many spins 
has finite total oscillation.) Finally, let C" be the nth matrix power of 
Dobrushin's interdependence matrix C, and define 

Dij - ~ (C")gj (2.8) 
I t = O  

We then have: 

Theorem 2.2. Let H be a quasilocal specification satisfying the 
Dobrushin condition ~ < 1. Then the unique infinite-volume Gibbs measure 
kt satisfies 

[p(fg)--i.t(f) lt(g) I <~ �88 ~. 5,(f) Do.&~(g) (2.9) 
i, . re  L/" 

for all functions f,  g of finite total oscillation. 

In particular, if 5 ~ is a regular lattice and the interaction is of finite 
range (so that c0.=0 whenever ]i-j]  >R) ,  then Dobrushin's condition 
0c<l implies that Dij decays exponentially as [ i - j [ ~ o v ,  so that 
Theorem 2.2 implies the exponential decay of correlations in the unique 
infinite-volume Gibbs measure. For  proofs of Theorem 2.2 as well as these 
related results, see ref. 3, Section 8.2, or ref. 4, Section V.2. 

Remark. The Dobrushin condition ~ < 1 is sufficient for uniqueness, 
but it is not necessary. A better result is given by the Dobrushin-Shlosman 
(DS) theory, t38-4~ Instead of dealing with a single-spin volume A = {i}, 
they consider a general volume A and define the quantities 

c , . j -  sup d(~A.I {G}), z~.,(.I {a})) (2.10) 
{,71. {a}  : ak =a,~. Vk ~. i  
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for every j e W ' .  The quantity cA..~ measures the dependence of the kernel 
rL~ on the boundary spin o-j. The Dobrushin criterion is replaced (for trans- 
lation-invariant interactions) by 

1 
7 4 - [ - ~  Z cA.j<l  (2.11) 

./e .4' 

If condition (2.11) holds for some volume A, then the infinite-volume 
Gibbs measure is uniqueJ 38~ When A={i} ,  we recover Dobrushin's 
Theorem 2.1. Those interactions satisfying condition (2.11) are called com- 
pletely analytical. There are 12 different (but equivalent) characterizations 
of completely analytical interactionsJ 39' 40~ 

It would be very interesting to use DS theory to improve the bounds 
on q~.(,_C, ~ given by the standard application of the Dobrushin criterion and 
to compare the results with our approach. An application of the DS 
criterion to the hard-square lattice gas has been worked out in ref. 41. 

3. GENERAL PROOF OF U N I Q U E N E S S  FOR q>2r 

Let us now apply Dobrushin's uniqueness theorem to a q-state Potts 
antiferromagnet defined by the (formal) Hamiltonian 

:~ = - ~" Jufi=,~j (3.1) 

with all couplings satisfying -oo  ~<J,).~0. We say that j is a nearest 
neighbor of i (denoted j ~ i )  in case Ju 50. We need to calculate the 
Dobrushin interdependence constants c u. 

First, some preliminaries: Let p be a probability measure on the state 
space E, and let f>~0 be any function on E such that p ( f ) -  ~ f d p  > O, 
Then we define the probability measure p~.r~ by 

pC.m= fo (3.2) 
P(f) 

("p weighted by f and then normalized"). 

Lemma 3.1. Let0~<f,g~<l .  Then 

[ p ( 1 - f ) , p ( 1  - g ) ]  
d(P"r',P"~')<~max L p(-f~ p(g) J (3.3) 
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Proos By definition, 

d(p(./.),p(~))=su p f~[g(x) f(x)] A=E p(g) "~-)j dp(x) (3.4) 

Suppose (without loss of generality) that p(f) <<. p(g). Then 1/p(f) >1 UP(g), 
so that 

g(x) f(x) 
P(g) P(f) 

1 -  f(x) 1 -  g(x) 

P(f) P(g) 
1 - f ( x )  

~< - -  [since 
P(f) 

(3.5) 

g~<l]  (3.6) 

But since f~< 1, we have ~,l [ 1 - f ( x ) ]  dp(x) ~<~ [ 1 - f ( x ) ]  dp(x)- 
p(l-f). II 

R e m a r k .  I f p ( f )  = p ( g )  and the supports of I - f a n d  1 - g are dis- 
joint, then this estimate is sharp. 

Let us now apply this lemma to compute the Dobrushin constant c o. 
in the Potts antiferromagnet (3.1). We shall assume that the site i has at 
most r nearest neighbors. Fix two configurations { ak} ~. ~; and { #k} k ~; that 
differ only at the site j. Let p be the conditional probability distribution at 
site i in the presence of all of t's neighbors other than j: 

p(cr,)={explk~. J,k6~,~]}J{~= explk~.jJ~k6~] } (3.7) 

And let 

f(ai) = exp [ J  0- ~,,,j] (3.8a) 

g(o-i) = exp [ J  0. ~,~j] (3.8b) 

The antiferromagneticity condition Jo <<- 0 guarantees that 0 ~< f ,  g ~< 1, so 
we can apply Lemma 3.1. Because the site i has at most i ' - 1  nearest 
neighbors k :~ j, it follows that in the measure p there are at least q - r + 1 
states with equal weight (namely, those states not equal to any of the 
{ak}k,,,-.j). Moreover, since all the Jik are ~<0, all the states that are equal 
to one or more of the {ak}~-~;..i have smaller weight. Hence the maximum 
weight given by p to any single state is ~< 1/(q- r + 1 ). Furthermore, 1 - f  
is nonzero on at most one state (namely, aj) and is there ~<1; so we 
have p(1- f )<~l / (q-r+l) .  The same holds for p ( 1 - g ) .  Hence, by 
Lemma 3.1, 
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so that 

and consequently 

Ip(1 - - f ) ,  p(1 - g)] 1 (3.9) d(P"f ' ,P'g))~max L p(--~ p(--~; [ < ' q _ ~  

1 
c g i ~ - -  (3.10) 

q - r  

~, co'<~ r__~_ (3.11) 
j~i q - - r  

If we now assume that every site in the lattice has at most r nearest 
neighbors, we can conclude that 

r 
0c-sup }-" c u ~ < - -  (3.12) 

ieSSPj~ i q- - r  

In particular, Dobrushin's condition ~ < 1  holds whenever q>2r.  
Moreover, the bound (3.12) holds uniformly in the values of the couplings 
{ Ju}, provided only that they are antiferromagnetic. Therefore, 
Theorems 2.1 and 2.2 guarantee that for q > 2 r  there exists a unique 
infinite-volume Gibbs measure at all temperatures (including zero tem- 
perature), and that this unique infinite-volume Gibbs measure exhibits 
exponential decay of correlations uniformly in the temperature. 

Remarks. 1. For the Ports antiferromagnet at zero temperature, 
i.e., when all nonzero Ju equal - o o ,  the bound (3.10) is sharp. 

2. Koteck~, (cited in ref. 3, pp. 148-149, 457) obtained the result 
(3.10)-(3.12) at zero temperature. But at nonzero temperature he obtained 
the weaker result c U <~ 2 / ( q -  r) and hence ~ ~< 2 r / ( q -  r), so that he proved 
uniqueness only for q > 3r. 

3. Jerrum 143) has shown that the heat-bath dynamics (with random 
choice of site) for a finite Ports antiferromagnet at zero temperature is 
rapidly mixing (i.e., has an autocorrelation time which is bounded by a 
constant times the number of sites) whenever q>2r.  This result also 
follows immediately--for either random or sequential choice of site, and for 
either zero or nonzero temperature--from the proof of the Dobrushin 
uniqueness theorem combined with our bound (3.12). The point is that the 
heat-bath update at site i is given by zqi / . 

4. I M P R O V E M E N T S  VIA SINGLE-SITE DECIMATION 

In this section we are going to improve on the bound q > 2r, using a 
computer-assisted proof that must be carried out separately for each lattice. 
For each of the four lattices we study (square, hexagonal, triangular, and 
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tl 

t 4 ~ t 2  

Fig. 4. Decimation for the square-lauice case. Once we sum over the spin s we obtain a new 
effective interaction among the spins lj Ij  = I. 2, 3, 4). 

Kagom~)  we find that  uniqueness holds for q > 2 r - 2 .  But of  course there 
is no guarantee  that  this result holds for general  lattices! 

We emphasize  that  our  p roo f  in this section is valid only at zero 
t empera ture  ( J = - c o ) .  P resumably  the result holds also for finite 
- co < J < 0, but  we do not  have any p roo f  of  this fact. 

The idea of our  p roo f  is simple: decimate the original lattice and then 
apply  Dobrush in ' s  cri terion to the dec imated  lattice. This tr ick has also 
been used by other  authors  in a different contextJ  4-'1 

The decimat ion step can be expressed in a general fashion. Consider  a 
spin s that  interacts with r neares t -ne ighbor  spins t~ ..... t,.. (See Fig. 4 for 
the case of  the square lattice, which has r = 4.) We have to per form the sum 
32[!= ~ exp(JY'. j  6,.. ~,); this will give us the statistical weight associated after 
decimat ion to the spin configurat ion (t~ ..... t,.). The  result is very simple for 
the ant i ferromagnet ic  model  at zero t empera tu re  ( that  is, J =  - c o ) :  

exp J ~, 6,..,j = ~, ( 1 - 6 , . . , ) = q - C ( t ,  ..... t,.) (4.1) 
s = I j = I s= 1 ./= I 

where C(t~ ..... t,.) is the number  of  distinct spin values ("colors")  we have 
in the configurat ion (t~ ..... t,.). Thus,  decimat ing the spin s will generate  the 
r -body interact ion (4.1) a m o n g  the spins t~ ..... t,.. 

In this section we will be considering only regular  lattices, in which 
each site has the same n u m b e r  r of  nearest  neighbors.  

4.1. Square  La t t i ce  

In this case the original lattice is bipartite,  so we can sum over  all the 
spins belonging to one of  the two sublattices (for instance, the empty  circles 
in Fig. 5). In this way we obta in  a decimated lattice defined by the rest of  
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U 

S 
Fig. 5. Decimation for the square lattice. The empty circles represent the spins summed 
over; the solid circles represent the resulting decimated lattice. Each spin to of the decimated 
lattice interacts with eight spins: lbur nearest neighbors t~, t2, I3, 14 and four next-to-nearest 
neighbors t~, t~_, t~, t~. 

the original spins (solid circles in Fig. 5). This decimated lattice is again a 
square lattice, but  rota ted 45 degrees with respect to the original one. 

The previous discussion on the decimation procedure  tells us that  the 
interaction on the decimated lattice lives on the "plaquettes" ( =  squares): 
the statistical weight for each such square is given by (4.1). Each spin to on 
the decimated lattice (see Fig. 5) interacts with the other  eight spins located 
on the four squares to which to belongs: (to, t~, t ' ,  t2), (to, t , ,  t~,/3), 
(to, t3, t'4, t4), and (t 0, t 4, t'~ , t~). These eight spins fall into two classes: four 
nearest-neighbor spins t t ,  t2,  t3,  t4 (which belong simultaneously to two of  
those squares), and four next-to-nearest  neighbors t'~, t~,,_ t~, t'4 (which 
belong to only one of  those squares). Thus, the quant i ty  

-= sup d(po( . I  {t}), Po( ' l  {?'})) (4.2) CO''/ {t},{~}: lk=~kVk~ j 

will depend on whether  the spin tj is a nearest neighbor or a next-to- 
nearest neighbor  of  the spin to. In what  follows, Co, ,n will denote  this quan- 
tity evaluated at a nearest-neighbor spin t s,  and c o . . . .  will denote the same 
quant i ty  evaluated at a next- to-nearest-neighbor spin tj. 
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To obtain Co. j we have to consider all the q8 distinct configurations 
{t} of the spins t~, t2, t3, t4, t ' l ,  t~, t~,  t~,  compute the conditional prob- 
ability measure po(-l{t}) for each such configuration {t}, compute the 
variation distance between all pairs of such measures whose second 
arguments differ only by the value of the spin t j ,  and finally take the maxi- 
mum of those distances. In the original proof of Koteck~ one could easily 
figure out which were the configurations which maximize (4.2). Here, this 
is more complicated due to the form of the four-body interaction (4.1). The 
important point is that for each fixed q there is only a f i n i t e  number of 
configurations to look at. So we can write a computer algorithm to 
examine all the possible configurations and compute (4.2). We have written 
a FORTRAN code implementing these ideas. In this case, the number of 
configurations is manageable, but in order to streamline the computation 
we have exploited the color-permutation symmetry of the Potts 
Hamiltonian and have considered only those configurations that are not 
related by a mere relabeling of the colors. This list of configurations was 
generated by another FORTRAN code using a recursive algorithm.'~ 

For each q we obtained Co. ,n and c o ..... . Given these values, it is easy 
to compute the quantity 

o~ == - ~ .  Co. . i=4Co.n ,  +4Co . . . .  (4.3) 
j ~ o  

When a < 1, Dobrushin's theorem states that the infinite-volume Gibbs 
measure is unique and that this measure exhibits exponentially decaying 
correlations. We performed this computation for q =  5, 6, 7, 8. [The case 
q = 4  is very special. First, the statistical weight (4.1) associated to a pla- 
quette with all the spins in different colors (i.e., C = 4 = q = r )  is zero. 
Second and more important, there are configurations of the spins 
t~ ..... t4, t't ..... t] for which all  possible values of to are forbidden at T =  0, 
so that the probability measure Po( 'l { t}) at T =  0 is ill-defined. In this case, 
we would have to compute po(-I{t}) at T > 0  and then take the limit 
T ~ 0 .  We are not going to consider such pathological cases in this 
paper, l, ] 

The numerical results for q = 5 ,  6, 7, 8 are displayed in Table II. 
Moreover, the general formulae for q>~ 6 can be easily guessed. The 
method is as follows: First, we identify which are the configurations that 

u, Given a list of all the possible configurations (not related by a permutat ion of the colors) 
for n spins, it is very simple to construct the same list for n + 1 spins. The starting point of 
the algorithm is trivial: for one spin there is only one such configuration. 

~ In any case, we shall see (empirically for our lattices) that Dobrushin 's  criterion is never 
satisfied when q = r +  I. As ct seems (again empirically) to be a decreasing function of q, 
Dobrushin 's  criterion would not hold when q = r. 
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Table II. Numer i ca l  Results for the Square Lat t i ce"  

q s n n  ( ' ( } ,  n n n  C( 

5 0.3750 0.2353 2.4412 
6 0.1899 0.1093 1.1967 
7 0.1137 0.0636 0.7093 < 1 
8 0.0756 0.0415 0.4683 < I 

" For each value of q we show the quantities c , . , ,  and co.,,,,. 
Finally, we give tile value of the parameter ~=4c . . , , ,  +4q j . . , , .  
When ~ < I there is ~l unique Gibbs measure at T = 0 .  

maximize co .... for each value of  q. There is (empirically) a value of  q = q".,qn 

such that  whenever q >~ q"mqn we always find the same maximizing configura- 
tions for co .... . For  these configurat ions we can compute  exactly the value 
of  Co. , .  for general q >~ q.",~n" The same procedure can be carried out  for 
Co ..... . For  the square lattice we find that  qmi."" = 6 and qmin"n = 5. The con- 
figurations found to maximize Co .... and c o . . . .  are depicted in Table III. 
F r o m  these patterns it is very easy to compute  the general formulae: 

( q - 3 ) - ~ ( 2 q - 7 )  for q>~6 (4.4) 
co. nn -- qS _ 16q4 + 108q3 __ 391q2 + 764q -- 639 

( q - - 3 )  3 
for q ~ 5  (4.5) 

co . . . . .  - qS _ 16q4 + 108q3 _ 389q2 + 7 4 9 q -  611 

These results show that  Dobrushin ' s  condi t ion ~ < 1 holds for q >~ 7. 
This value is two units smaller than the value obtained by Koteck~ (q/> 9), 
a l though still far from the t ruth (q/>4,  or  more  precisely, q >  3). 

Table III. Con f i gu ra t i ons  Which M a x i m i z e  Co, n. and c o . . . .  for 
the  Square Lat t i ce  when  q>~5" 

{ '0 .  n n  CO, n n n  

C - -  B - - A  C - -  B - - A  A - - C - - A .  B 
I I I I I I I I I 

D - - O - - C ,  D D - - C - - C  D B - - C I - - D  
"1 I I I I I I 

C - - E - - A  C - - E - - F  E - - A - - B  

q = 5  q ~ 6  q ~ 5  

" Each distinct letter represents a distinct spin value. Tile spin to is denoted 
by an empty circle {O). The spin tj is the one that has two different spin 
values associated to it. 

822:'86:3-4-8 
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Fig. 6. Decimation for the hexagonal lattice. The original hexagonal lattice is drawn with 
thin lines; the empty circles represent the spins summed over; the triangular lattice resulting 
from decimation is drawn with solid circles and thick lines. Each spin to of the decimated lat- 
tice interacts with six nearest-neighbor spins t~ ..... t6. 

4.2.  H e x a g o n a l  L a t t i c e  

This  la t t i ce  is a l so  b ip a r t i t e ,  so we c a n  a g a i n  s u m  ove r  one  of  the  two  
sub la t t i ce s  ( e m p t y  circles  in Fig .  6). By th is  d e c i m a t i o n  p roce s s  we o b t a i n  
a t r i a n g u l a r  l a t t i ce  ( so l id  circles  in Fig .  6). T h e  s ta t i s t i ca l  we igh t  (4.1) con -  
sists o f  t h r e e - b o d y  i n t e r a c t i o n s  l iv ing  on  the  t r i ang les  t h a t  c o n t a i n  a 
d e c i m a t e d  sp in  in the i r  in te r ior .  T o  each  sp in  to the re  c o r r e s p o n d  th ree  
such  t r i ang les :  (to,  t~, t2), ( to,  t3, t4), a n d  (to,  ts ,  t6), so t o i n t e r ac t s  wi th  six 
n e a r e s t - n e i g h b o r  spins.  A11 these  sp ins  a re  equ iva l en t ,  so  in th is  case  we 
on ly  have  to  c o m p u t e  one  q u a n t i t y  Co. . . .  W e  then  have  e = 6Co. . . .  

Table IV. Numerical Results for 
Hexagonal Lattice" 

q Co, nn ~X 

4 0.2667 1.6000 
5 0.1233 0.7397 < 1 
6 0.0699 0.4192 < 1 

" For each value of q we compute the quantities co,,. and 
= 6c,, nn" 



Absence of Phase Transition for AF Po t ts  M o d e l s  569 

Table V. Configurations 
Which Maximize c0, nn for the 
Hexagonal La t t i ce  w h e n  q i> 4" 

CO.nn 

B A 

\ /  
A �9 A,B \ / \ /  

B C 
q>~4 

"The notation is as in Table Ill. 
Notice that, because the two outer 
spins within each triangle are equiv- 
alent, we can freely permute their 
values. 

The numerical results for q =4 ,  5, 6 are contained in Table IV. The 
general form of Co. n, can be guessed from the configuration which maxi- 
mizes Co. o, for q >/4; this configuration is shown in Table V. The formula 
for Co. ,,n is 

( q - 2 )  2 
for q ~> 4 (4.6) Co, nn - -  q4 __ 9q3 + 33q-" - 59q + 43 

We see that Dobrushin's condition ct < 1 holds for q/> 5. We again 
improve Koteck~,'s result (q >~ 7) by two units. This should be compared to 
the believed exact result q >~ 3 (more precisely, q > 2.618...). 

4.3. Triangular Lattice 

This lattice is tripartite. We can decimate it by summing over all the 
spins belonging to one of the three sublattices (empty circles in Fig. 7). The 
result of the decimation process is a hexagonal lattice (solid circles in 
Fig. 7). From (4.1) we see that the interaction lives now on the hexagonal 
faces of this lattice, so each spin to interacts with the other 12 spins 
belonging to the three hexagons to which to belongs: (to, t~, t't, t'_,, t~, t2), 
( t  o, t2,  t~, t~, t~, t3), and (t o, t3,  t~, t~, t~, t l ) .  There are two types of 
neighboring spins: nearest-neighbor spins tl, t2, t3 (which belong to two 
different hexagons), and next-to-nearest neighbors t't ..... t'9 (which belong to 
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t'~ t'~ 

Fig. 7. Decimation for the triangular lattice. The original triangular lattice corresponds to 
both thin and thick lines: the empty circles represent the spins summed over: the hexagonal 
lattice resulting from decimation is drawn with solid circles and thick lines. Each spin 6, of 
the decimated lattice interacts with 12 spins: three nearest neighbors t~, t2, t 3 and the nine 
next-to-nearest neighbors t~ ..... t'9. 

only one hexagon).~2 F o r  each type we have to compu te  the co r r e spond ing  
quan t i ty  (4.2). W e  again  denote  these Co .... and  Co . . . . .  respectively.  The  
quan t i ty  ~ can be wri t ten as e = 3Co .... + 9 c o  . . . . .  . 

There  is one i m p o r t a n t  po in t  concern ing  this lattice. In  the prev ious  
two examples  the l inks of  the dec imated  lat t ice d id  not  coincide  with those 
of  the or iginal  lattice. However ,  in the t r i angu la r  lat t ice the l inks of  the 
dec imated  lat t ice are a s u b s e t  of  the l inks of  the or ig inal  lattice. This  means  
tha t  the s tat is t ical  weight associa ted  to a given hexagon  is no t  given merely 
by  (4.1); one has  also the t w o - b o d y  in terac t ions  f rom the or iginal  
Hami l ton ian .  F o r  example ,  the weight associa ted  at  T =  0 to the hexagon 

' ' ' t2), bu t  ra ther  ( t o ,  t l ,  t'L, t ' , ,  t~,  t2)  is no t  q -  C ( t o ,  t~ ,  t i ,  t2 ,  t3 ,  

[ q - C ( t  o, t~, t't, t~,,_ t'3, t2)](1 - 6 , . .  ,,)(1 - d , ,  .6)(1 - c5,~,, i) 

x ( 1 - 6 , ' .  6 ) (  1 - d,,3. , ,)(  1 - 6,,_. ,,,) (4.7) 

J2 Geometrically there are two classes of next-to-nearest-neighbor spins: those diametrically 
opposite to to (e.g., t'2) and those not (e.g., t] and t~). But these two classes play identical 
roles in the interaction (4.1), which is invariant under permutations of t~ ..... t r. 
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Table VI. Numerical Results for Triangular Lattice" 

(1 C(I. n n  C0, n n n  0C 

7 0.5714 0.2667 4.1143 
8 0.3803 0.1233 2.2504 
9 0.2832 0.0699 1.4784 

I 0 0.2244 0.0446 1.0743 
11 0.1852 0.0307 0.8324 < I 
12 0.1574 0.0224 0.6741 < I 

" Notation is as in Table lI; here = = 3co.., + 9co.,,,,. 

When we take account  of  the three hexagons  adjoining to, we have to 
include 15 factors l - ~ , , . . , j  in our statistical weight. However,  only  the 
three factors ( 1 - ~,,,. ,t )( 1 - ~,o. ,2)( 1 - 8,.. ,3) are essential. This is because 
those delta functions whose  arguments are both  distinct from t o are simply 
boundary  condit ions  (their values are independent of  to). If their product 
is nonzero,  they will factor out  when comput ing  Po- If their product is zero, 

Table VII. Configurations Maximizing Co... and Co . . . .  for the Triangular 
Lattice when q I> 7" 

CO.nn Cll,  nnn 

C - - B  C - - B  
/ \ / \ 

E - - D  A E - - D  E, F 
/ \ / / \ / 

F O - - C ,  E F O - - A  
\ / \ \ / \ 

G - - B  D A- -C  D 
\ / \ / 

G - - C  F - - E  

CraB  
/ \ 

E - - D  A 
/ \ / F\ /O--C~x ~ 

C - - A  D 
\ / 

G - - C  

q ~ 7  q ~ 7  

" Notation is as in Table III. Notice that, as in Table V, we obtain equivalent configurations 
by permuting the outer spins within each hexagon (i.e., those spins that are not shared 
between two hexagons). 
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then we should go to T >  0 [where the corresponding weight exp(Jc~,k ' ,j) is 
nonzero],  do the computation (and factor their contribution out), and take 
the limit T--, 0. At the end, the result would be the same as if we had 
omitted these factors from the very beginning. 

The numerical results for 7 -%< q -%< 12 are displayed in Table VI. We find 
that there are two different types of configurations maximizing Co . . . .  and 
only one for Co ..... ; these patterns are depicted in Table VII. Using the con- 
figurations represented in Table VII, it is very easy to guess the general for- 
mulae for Co .... and Co . . . .  : 

( q - -  5)3 for q>~7 (4.8) 
Co, nn q4__ 21q3 + 168q-" -- 609q + 847 

( q - - 5 )  3 

Co ..... --q4 21q3+ 168q2_608q+841 for q~>7 (4.9) 

We see that Dobrushin's condition ~ < 1 holds for q/> 11, which is 
again an improvement of two units compared to Koteck~'s result (q/> 13). 
Our result should be compared with the expected exact value q >~ 5 (or 
more precisely, q > 4). 

htl  

d 

t~ t~ 

Fig. 8. Decimation for the Kago,n~ lattice. The original Kagom~ lattice corresponds to all 
the diagonal and horizontal lines; the empty circles represent the spins summed over; the 
square lattice resulting from decimation is defined by the horizontal and vertical lines. Each 
spin to of the decimated lattice Isolid circles) interacts with six spins: two nearest neighbors 
/t,  t2 and four next-to-nearest neighbors t], t~, t~, t~. All these six spins live on the two 
"crossed" squares to which t~j belongs. 
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4 .4 .  K a g o m 6  L a t t i c e  

In this case we sum over  those spins si tuated on the top  vertex of  the 
up-point ing  triangles (open circles in Fig. 8). After decimat ion we obtain  a 
square lattice defined by the solid circles in Fig. 8. Obvious ly  the interac- 
t ion (4.1) lives on the "crossed" squares  (i.e., those which have a decimated 
spin, indicated by an open circle, inside). Each spin to interacts with two 
such squares: (to, t l ,  t'l, t~) and (to, t2, t~, t~). A m o n g  the six spins with 
which t o interacts,  we can distinguish two types: two neares t -neighbor  spins 
(t~ and t:), which are connected to t o th rough  an original link; and four 
next - to-neares t -ne ighbor  spins (t'~, t~, t~, t~), which are connected to to 
through the p laquet te  interaction. We associate a different value of  Co, y to 
each type of  spin (Co. n, and c o . . . . .  respectively). The  quant i ty  a is now 
equal  to ~ = 2Co, ,n + 4Co . . . .  . 

As explained in the last subsection, we have to include in the statistical 
weight the delta functions cor responding  to the surviving original links and 
involving the spin to. In  this example  there are two such factors: 
( 1 - ~,,,, ,,)( 1 - fi,0. ,,.). The  numerical  results for q = 5, 6, 7, 8 are displayed in 
Table  VIII .  The  configurat ions which maximize  Co.j for each type of 
ne ighbor  ( / a r e  shown in Table  IX. Using the configurat ions depicted in 
Table  IX, it is easy to guess the general formulae for Co,,, and Co . . . .  : 

q - 3  
for q~>5 (4.10) Co .... q2 _ 7q + 13 

q - 3  for q~>5 (4.11) 
Co . . . .  - q3 _ 10q2 + 35q - 43 

We see that  Dobrush in ' s  condi t ion 0~ < 1 holds for q/> 7. Again we 
obta ined an improvemen t  of  two units over  Koteck~ ' s  result (q >~9). Our  
bound  q~>7 should be compa red  to the exact result q>~4 (or  more  
precisely, q > 3). 

Table VIII. Numerical Results for Kagom~ Lattice" 

q CO.nn CO.nnn 

5 0.6667 0.2857 2.4762 
6 0.4286 0.1304 1.3789 
7 0.3077 0.0727 0.9063 < 1 
8 0.2381 0.0459 0.6597 <1 

"Notation is as in Table II; here ~ = 2co.., +4co.,,,. 
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Table  IX. C o n f i g u r a t i o n s  W h i c h  M a x i m i z e  c o . . . .  

and c o . . . .  fo r  the  K a g o m e  Lat t ice  w h e n  q>~5" 

r ('O.nnn 

B - - A  B - - C ,  D 
I I 

B - - ; - - ~ ,  c B-- �9  
I I I I 

C - - A  C - - D  

q ~ 5  q ~ 5  

" Notation is as in Table IIL In the diagrams a thick line 
represents a link belonging to tile original lattice (and 
carrying an additional Kronecker delta term). On each 
square the two spins not connected to such a link can be 
freely interchanged. 

5. F U R T H E R  I M P R O V E M E N T S :  C L U S T E R  D E C I M A T I O N  

In this section we present slightly better results for the hexagonal and 
Kagom~ lattices. The idea is simple: if using single-site decimation 
(Section 4) we obtained improved bounds, then it is natural to expect even 
better results if we decimate clusters of nearby spins. This is what happens 
in the proof presented in ref. 42, and it happens also in our case. 
Obviously, as we decimate larger clusters, the effective interaction among 
the remaining spins becomes more and more complicated (the effective 
interaction contains between 128 and 2410 terms for the three cases con- 
sidered below); this fact limits the practical utility of this method. 
Nevertheless, we have been able to improve slightly our previous results in 
two cases: the hexagonal and Kagom6 lattices. Our method will be 
explained in detail in the following subsections. 

5.1. H e x a g o n a l  L a t t i c e  

The first step is to choose suitable clusters of spins to be summed over. 
In this example we selected a subset of the hexagonal faces of the original 
lattice (see Fig. 9). The remaining spins (solid circles) define the decimated 
lattice, which is again a hexagonal lattice. Each hexagonal face of this 
decimated lattice contains one hexagonal cluster of spins that were summed 
over (empty circles). It is important to notice that these clusters (of empty 
circles) do not have any nearest-neighbor interactions with other such 
clusters. So we can perform the sum over the six spins belonging to the 
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Fig. 9. More complex decimation for the hexagonal lattice. The original lattice is drawn 
with thin lines; the empty circles represent the spins summed over; the decimated lattice is 
drawn with solid circles and thick lines. Each spin to of the decimated lattice interacts with 
12 spins: three nearest neighbors tl ,  t2, t3, six second-nearest neighbors t'l ..... t~,, and three 
third-nearest neighbors t'~, t", t~. 

cluster, and obtain an effective interaction among the six spins of  the 
decimated lattice surrounding the cluster. However, this effective interac- 
tion is not as simple as the single-site-decimation interaction (4.1). To be 
able to handle it, we wrote a program in MATH~MATICA to do all the 
required sums. The final expression can be written as a certain linear com- 
bination of  products of  Kronecker delta functions. This turns to be very 
long and complicated, so we omit its form here. ~3 We remark that this 
interaction has the property that even when q = 3 = r, every state of  to gets 
nonzero weight, irrespective of  the configuration of  the neighboring spins; 
in particular, there is no ambiguity at T =  0, in contrast to what happens 
for the single-site-decimation interaction (4.1). 

~3 Actually, we did not use this expression in our FORTRAN programs, as it is very memory- 
and time-consuming. Rather, we first classified all the possible configurations into classes 
with the same statistical weight. For the cases considered here, the number of classes is 
moderate (up to 36). The important point is that we can easily tell to which class a given 
configuration belongs, by measuring a few quantities (such as the number of distinct colors 
of the configuration). We then devise a simple formula that reproduces the correct statistical 
weight. The practical procedure depends on the lattice and type of decimation considered, 
but it is always faster and less memory-consuming than direct use of the formula computed 
with M ATI IEMATICA. 
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Table X. 

Salas and Sokal 

Numerical  Results for the Hexagonal Lattice when We Use Six-spin 
Decimat ion"  

q CO, I n ( '0 ,  2n  Ct), 3n  Ct 

3 0.5685 0.3904 0.2136 4.5985 
4 0.1036 0.0292 0.0164 0.5356 < 1 

" For each type of neighbor we show the corresponding value c~.j. We also show ~ =  
3co. an +6CO.2n + 3Ct~.3n. When cc<l  there is a unique Gibbs measure at T = 0 .  

The effective interaction lives on the hexagonal faces of the decimated 
lattice. Each spin to interacts with three hexagons: (to, tu, t'u, l';, t2, t2), 
(to, t,,_ t~,  t~,_ t'4, /3),  and (to, t3, t;, t~,  t~, t l ) .  There are three types of 
neighbors: three nearest-neighbor spins t~, t2, t3 (which belong to two dif- 
ferent hexagons), six second-nearest-neighbor spins t'~,..., t~ (which belong 
to only one hexagon and which are not diametrically opposite to to), and 
three third-neighbor spins t'[, t~, t~ (which belong to only one hexagon and 
which are diametrically opposite to to). We have to compute a different Co..i 
for each type of neighbor: we denote these Co. t., C0.2n, and Co, 3., respec- 
tively. The quantity (2.5) is now equal to 0~= 3Co. h + 6C0,2, + 3C0, 3," 

The numerical results for q = 3, 4 are displayed in Table X. We see 
that Dobrushin's condition ~ < 1 is satisfied for q = 4, so we have improved 
by one unit the bound of Section 4. That is, we have proven that for the 
hexagonal lattice at zero temperature there is exponential decay of correla- 
tions for q >~4. The expected result is q > 2.618 . . . .  

5.2. Kagom6 Lattice 

In this case our chosen clusters will be a subset of the triangular faces 
of the Kagom+ lattice (empty circles in Fig. 10); they are not connected by 
any nearest-neighbor interaction. The remaining spins (solid circles) define 
the decimated lattice, which turns out to be hexagonal. The triangular 
clusters are surrounded by the "deformed" hexagonal faces of the 
decimated lattice. In addition, there are hexagonal faces of the original 
lattice which belong also to the decimated lattice. The effective interaction 
coming from the decimation procedure lives on the "deformed" hexagonal 
faces only. It has again a very complicated form, and we had to use 
MATHEMATICA to compute it. When q = 4 = r we see that the effective inter- 
action assigns a zero weight to a few configurations. However, there are no 
configurations of the neighboring spins for which all the possible values of 
to are forbidden, so there is no ambiguity at T =  0 even in this case. 
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/ \  / \ / \ / 
Fig. 10. More complex decimation Ibr the Kagom6 lattice. The original lattice corresponds 
to the whole set of circles (empty and solid) and the nearest-neighbor bonds between them; 
the empty circles represent the spins summed over; the decimated lattice is drawn with solid 
circles and thick lines. Each spin to of the decimated lattice interacts with nine spins: two 
nearest neighbors t t . I  2, one second-nearest neighbor t't, four third-nearest neighbors 
t'~. t", t~, t~, and two fourth-nearest neighbors ti", t'. 

F r o m  Fig. 10 we see tha t  each spin to of  the dec imated  lattice interacts 
with only two "deformed"  hexagons.  There  are four types of  neighboring 
spins: two neares t -ne ighbor  spins t t , t  2 (which belong to only one 
hexagon) ,  one second-nearest  ne ighbor  t'~ (which belongs to bo th  
hexagons) ,  four third-nearest  neighbors  t'~, t~, t~, t~ (which belong to one 
hexagon  and are not  connected to t'~), and two fourth-nearest  neighbors  
t'~", t~' (which belong to only one hexagon and are connected to t'j ). Not ice  
that, in addi t ion to the effective interact ion coming f rom the decimat ion 
procedure,  we have to include the factors (1 -f i ,o.  ,~ )( 1 -fi , , , .  ,,_) arising f rom 
the original two-body  interaction,  because the links ( to ,  t t )  and ( t o ,  t 2 )  
belong also to the original lattice. To  each ne ighbor  type we associate a 
different c0..;: we denote  these co. ~., Co. ,_., Co. 3. and co. 4,, respectively. The 
quant i ty  (2.5) takes the form ct = 2Co. t,, + Co. 2n + 4C0, 3. + 2C0.4,,- 

In Table  XI we show our  numerical  results for q = 4, 5, 6. We notice 
that  the cons tants  for the third and fourth nearest  neighbors  coincide in all 
cases. (However ,  we were unable  to find an analytic p r o o f  of  this result. In 
part icular,  there does not  appea r  to be any symmet ry  that  would  yield this 
equality.) Dobrush in ' s  condi t ion ~ < 1 holds for q = 6, improv ing  the result 
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Table Xl. 

Salas and Sokal 

Numerical Results for the Kagom~ Lattice when We Use Three-Spin 
Decimation" 

q Co. In Co.2n Cik3n e(I, 4n 

4 1.0000 1.0000 0.6667 0.6667 7.0000 
5 0.4949 0.1590 0.1003 0.1003 t.7504 
6 0.2975 0.0581 0.0330 0.0330 0.8529 < 1 

" Notation is as in Table X;here  ~ = 2co.i, + cc).2,,+ 4co.3n + 2C0.4n. 

of Section 4 by one unit. So, there is no phase transition at zero tem- 
perature for the Kagom+ lattice when q >/6, which should be compared 
with the expected result q > 3. 

We have also tried to improve these results by considering decimation 
of hexagonal clusters (as we did in the previous subsection). After the 
decimation procedure we obtained a new Kagom6 lattice (rotated 
90 degrees). The values of c~ for q = 4, 5 were 3.83 and 1.07, respectively, 
which are smaller than the corresponding values reported in Table XI. 
However, in both c a s e s ,  > 1. Therefore, we are unable to prove exponen- 
tial decay of correlations for q < 6. 
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